

Measuring Byram's Fire Intensity from Infrared Remote Sensing Imagery

Joshua Johnston

Canadian Forest Service King's College London, UK

Canada

Martin Wooster

King's College London, UK

Ronan Paugam

King's College London, UK

Tim Lynham Canadian Forest Service

University of London

Canada

Byram's Fire Intensity

Byram's fire intensity (FI; kW m⁻¹):

- the rate of energy (or heat) release per unit time per unit length of the fire front (Byram 1959)
- Energy released by convection, conduction *and radiation* (now)
- Pertains to the active combustion along the perimeter (typically flaming) not smouldering which occurs within the burned area (Alexander 1982)

Calculating FI

Byram's Equation: FI = Hwr

Natural Resources

Canada

Where:

FI = fire intensity (kW m⁻¹) H = low heat of combustion (kJ kg⁻¹) w = fuel consumed (kg m⁻²) $r = ROS (m s^{-1})$ * FI is calculated based on measurements of H, w, and r

Ressources naturelles

Fire Radiative Power

Fire Radiative Power (FRP):

Canada

A measure of the rate of radiant heat output from a fire

Fire Radiative Energy (FRE)

The time integral of FRP over the life of a fire

FRP and FRE can be calculated using a ۲ wide range of different IR detectors, most commonly it is recorded from a nadir viewing position

HANDHELD

AIRBORNE

Fig. 18.9 Wooster, et al. (2013)

Fire Radiative Power

FRP can be used to quantitatively measure the amount of biomass burning, regardless of fuel type

Canada

Fire Radiative Power IS NOT Fire Intensity (as understood by fire researchers and managers)

- FRP is frequently referred to as "fire intensity" by the remote sensing community
- Often FRP and Byram's fire intensity can be seen being discussed interchangeably in the literature
- A very clear distinction can be drawn between FRP and FI
- FRP is a stepping stone to a unique understanding of actual FI

Canada

FRP IS ONLY RADIATIVE ENERGY

FRP and FI have Different Physical Extents

$FRP = kW \text{ (or } kW \text{ m}^{-2}\text{)}$ $FI = kW m^{-1}$

How would Byram define FRP?

Byram (1959)

Total Fire Intensity:

Canada

- the rate of heat release from the fire as a whole (kW)
- Avoids interest in the flame • front or its advancement
- FRP is the radiative total fire intensity

Canada

Calculating FI: Part 2 Byram's *other* equations

FI = Er

FI = Rd

Where:

FI = fire intensity (kW m⁻¹) E = available fuel energy (kJ m⁻²) $r = ROS (m s^{-1})$

Where:

- $FI = fire intensity (kW m^{-1})$
- $R = combustion rate (kW m^{-2})$
- d = depth of the combustion zone (m)

Calculating FI: Part 3 Byram meets FRP

$$FI = Er \approx FI_{rad} = FRE \times ROS$$

Natural Resources

Canada

Where:

FI = fire intensity (kW m⁻¹) E = available fuel energy (kJ m⁻²) $r = ROS (m s^{-1})$ $FI = Rd \approx FI_{rad} = FRP \times d$ Where:

- $FI = fire intensity (kW m^{-1})$
- R = combustion rate (kW m⁻²)

d = depth of the combustion zone (m)

Canada

 \approx

Calculating FI: Part 3 Byram meets FRP

$$FI = Er$$

$$FI_{rad} = FRE \times ROS$$

Where:

FI = fire intensity (kW m⁻¹) E = available fuel energy (kJ m⁻²) $r = ROS (m s^{-1})$

$$FI = \frac{1}{Q_{rad}} \left(\int_{\tau} FRP \ dt \right) \times \frac{D}{\tau}$$

FI = Rd \approx $FI_{rad} = FRP \times d$ Where: FI = fire intensity (kW m⁻¹)

 $R = combustion rate (kW m^{-2})$

d = depth of the combustion zone (m)

Where:

FI = fire intensity (kW m⁻¹) Q_{rad} = the radiative fraction **FRP** = kW m⁻² **D** = distance traveled in τ (m) τ = time domain (sec)

Rose Experimental Burn Station

 60 Ha of forest in Rose twp. North of Thessalon Ontario

Natural Resources

Canada

- Originally used for spray trails by CFS in 1980's
- Jack and Red pine forest, with large clearing in the NE corner of the plot due to scleroderris canker
- 30 m scaffold tower, burning pit, lab and accommodation trailers

Canada

FUELS

4	Date	Burn	Fuel load (kg/m^2)	Fuel depth	Moisture (H ₂ O / fuel)	<u>Pinus palustris</u>	Mean (stdev)	units	n
			(18/11)	(///			50.05 (+ 12.00)	-1	02
	June 7, 2013	1	$0.988~(\pm 0.028)$	$0.122 (\pm 0.001)$	0.073 (± 0.012)	SA to V ratio	59.95 (± 13.98)	cm	92
		2	0.972 (± 0.041)	0.120 (± 0.010)	0.094 (± 0.016)				
	June 9, 2013	1	0.977 (± 0.018)	0.098 (± 0.008)	0.080 (± 0.025)	Density	756.44 (± 454.74)	kg/m ³	38
	June 12, 2013	1	0.918 (± 0.048)	0.102 (± 0.001)	0.079 (± 0.011)				2
		2	0.911 (± 0.078)	$0.074 (\pm 0.002)$	0.063 (± 0.006)	Mineral Content	$0.001 (\pm 0.001)$	(g mineral)/(g fuel)	3
		3	1.296 (± 0.060)	0.133 (± 0.002)	0.096 (± 0.010)				
	June 14, 2013	1	0.838 (± 0.040)	0.106 (± 0.003)	0.059 (± 0.011)	Heat of	20.696 (± 378.98)	MJ/kg	3
	June 16, 2013	1	0.878 (± 0.098)	0.114 (± 0.003)	0.111 (± 0.013)	combustion			
		2	0.894 (± 0.056)	0.083 (± 0.001)	0.084 (± 0.014)				
		3	0.878 (± 0.032)	0.094 (± 0.005)	0.087 (± 0.011)				
	June 17, 2013	1	0.574 (± 0.044)	0.056 (± 0.007)	0.091 (± 0.006)	The second second			
		2	$1.255 (\pm 0.031)$	0.123 (± 0.017)	0.106 (± 0.019)		100 100		
		3	1.289 (± 0.080)	0.130 (± 0.006)	0.110 (± 0.031)				
	June 18, 2013	1	0.851 (± 0.022)	0.102 (± 0.006)	0.096 (± 0.022)				
		2	$1.282 (\pm 0.080)$	0.136 (± 0.007)	0.090 (± 0.008)		AND HE CONTRACT	The second secon	h
		3	1.376 (± 0.023)	$0.081 (\pm 0.007)$	0.095 (± 0.013)		A CONTRACTOR OF THE OWNER	the state of the s	and the second second
		4	0.915 (± 0.032)	$0.080 (\pm 0.006)$	0.104 (± 0.014)			and a start of the	
		5	0.906 (± 0.059)	$0.061 (\pm 0.008)$	0.093 (± 0.033)	della Parte P		and the second second	and the second
		6	$1.347 (\pm 0.042)$	0.126 (± 0.006)	0.097 (± 0.004)			and the second second second	
		7	0.634 (± 0.026)	0.063 (± 0.003)	$0.107 (\pm 0.008)$		A Line of Second State		A IN THE PARTY
		8	1.401 (± 0.003)	0.153 (± 0.007)	0.089 (± 0.014)				

.....

Burn protocol

- Ignition by applying a drip torch line across the rear of the pad 0.5 m into the fuel bed
- This method was used to help accelerate fires to a peak intensity state rapidly
- Burns were allowed to smoulder until virtually all visible smoke was gone UNLESS winds were too strong \succ

Fire Behavior

Raw Data

Natural Resources Ressources naturelles Canada

ROS

0.0 (m/sec)

0.0 (kW/m)

Implications

For Research:

- The ability to measure fire intensity ٠
- Complete fire behavior data set ٠ without the need for ground sampling
- The ability to study wildfires

For Response:

- Decision support tool
- Near-real time spatial maps of :
 - Fire perimeters \geq
 - ROS \triangleright
 - FI
 - Flame length (modelled)
 - DOB (modelled) \triangleright
 - etc... ⋟

HANDHELD

AIRBORNE

Fig. 18.9 Wooster, et al. (2013)

GEOSTATIONARY

Fig. 1: Wooster, et al. (2005)

Future Work

Canopy Interception:

Canada

- Verify canopy interception FRP model
- Develop a method of implementing this model in analysis

Landscape scale validation:

- Fixed wing scans of PBs and Wildfires
- Optimising sampling patterns
- Explore the potential use of satellite and/or UAV imagery

Chank/yo

Questions?

REFERENCES

Alexander, M. E. (1982). Calculating and interpreting forest fire intensities. Canadian Journal of Botany, 60(4), 349-357. doi: 10.1139/b82-048

Byram, G. M. (1959). Combustion of Forest Fuels. In K. P. Davis (Ed.), Forest fire: control and use (pp. 61-89). New York: McGraw-Hill.

Wooster, M. J., G. Roberts, G. L. W. Perry and Y. J. Kaufman (2005). "Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release." Journal of Geophysical Research 110.

Wooster, M. J., G. Roberts, A. M. S. Smith, J. Johnston, P. Freeborn, S. Amici and A. T. Hudak (2013). Thermal Remote Sensing of Active Vegetation Fires and Biomass Burning Events. Thermal Infrared Remote Sensing. C. Kuenzer and S. Dech, Springer Netherlands. 17: 347-390.

Additional Slides

Natural Resources **Ressources naturelles** Canada

